
NanoShaper 0.3.1 User Guide

Sergio Decherchi
Fondazione Istituto Italiano di Tecnolgia

November 12, 2012

Analyzing molecular surfaces it is a key issue in biophysical modeling. The
aim of NanoShaper is to measure molecular properties such as the volume, the
surface area and cavities, build a Finite Difference grid for PDE solution and
to triangulate the molecular surface; this is achieved by employing ray-casting
[4, 2].
Ray-casting here is used as a tool to inspect, in a grid based world, the inner part
of the surface. This allows to build an in/out map by which one can perform
floodfill to identify cavities, estimate their volume, and fill them if requested.
The software can be used also with non molecular surfaces provided that they
are manifold. The algorithm can deal with analytical or meshes surfaces. The
algorithm is robust to duplicated vertices/faces nad almost degenerate triangles.
Volume is estimated by a triple ray-casting process using as starting points of
the ray the x,y,z sides of the cube that contains the molecule; the three obtained
values of the volume are averaged thus getting an highly accurate result.
In order to estimate the surface area an ad hoc Marching Cubes algorithm
has been developed in order both to triangulate the surface and to accurately
perform surface area estimation [4]; moreover if voids are removed the final
triangulation is consistent with cavities removal. All the framework is developed
in portable, expandable C++.
In this version one can load a .off/.ply triangulated mesh, a msms file [5] and
build the Skin [3], Blobby [1] and the SES (Connolly) molecular surfaces.

1 What’s new

In this version the 2D grid data structure for ray-casting is applied to triangles
mesh with improved performance of a factor of 3x in big meshes (more than
100k triangles).
The Skin surface build-up has been optimized with a increased performance
from 3x to 12x wrt NanoShaper 0.2; now Skin surface build-up is only slightly
slower than Connolly surface. Ray-casting performance for skin has been also
slightly improved.
NanoShaper 0.3.1 is shipped with the script setup.py; this script for Linux/Mac
try to recognize your distribution install the required packages, download/patch

1



(surf.u3d)

Figure 1: Example of Skin surface ray-traced by PovRay and triangulated (in-
teractive)

CGAL and compile NanoShaper all automatically.
Supported package managers are: fink (Mac), apt-get (Ubuntu/Debian), yast
(Suse) and yum(RedHat/Centos). For Windows user the manual installation is
mandatory; however NanoShaper is shipped with an executable for Windows.
Now new keywords are defined which allow to disable epsilon map colouring
(grid cube facets), to disable status map (the map used for cavity detection)
and to control the settings of the acceleration grids for ray casting and boundary
grid projection. By default the dielectric map (for FD, PDE solution) is disabled
thus allowing a significant reduction of memory usage.

2 Getting Started

NanoShaper can be automatically configured and compiled with the setup.py
script in Linux/Mac or compiled and installed manually. For Windows user an
executable is in bin directory. For optimal performance Linux is suggested. To
run NanoShaper type the NanoShaper executable followed by the configuration
file. Remember that NanoShaper needs at least 4 atoms to work: if you have
less atoms put the missing atoms with 0 radi on the same position of the original
atoms.
Here the two procedures for compiling NanoShaper.

2.1 Automatic mode for Linux/Mac

In a Linux shell, log as root and run:

python setup.py

This will try to automatically guess your distribution, download and install the
necessary packages accordingly, download CGAL, compiling CGAL, patching

2



CGAL, configuring and compiling NanoShaper. You will find NanoShaper in
the build folder.

2.2 Manual mode for any OS

In order to build the full version of the software the system must have in-
stalled CGAL (for the Skin/SES support CGAL 3.9 was used), Boost libraries
and cmake; In Linux/Mac GCC is required and in Windows NanoShaper it has
been tested on Visual Studio 2008/2010 but it should work also on next versions.
Building the software consists in a cmake configuration step and make; addition-
ally patching CGAL is required (for Visual Studio 2010 also Power test 3.h is
required as patch); prior to building, overwrite the files contained in CGALpatch
in the CGAL include directory where the same .h are present. For simplicity
and to minimize the number of packages to be installed use the following cmake
command for CGAL:

cmake . -DWITH examples=false -DWITH CGAL Qt4=false
-DWITH CGAL Qt3=false -DWITH CGAL ImageIO=false

Once CGAL is compiled to build the configuration for the software go to NanoShaper
build folder and type cmake ... If you are on Windows and on a 64 bit machine
perform cmake by expliciting setting the current compiler (see cmake help).
On a Windows system you will get a Visual Studio project and Linux/Mac a
make file. Build either typing make or using Visual Studio.
If CGAL is not present, mesh, msms and Blobby surfaces will be still available
and the code should be compilable with any C++ compiler that has boost sup-
port. If neither boost is present the same functionalities will be given but using
a single execution thread; in this last case the software does not depend on any
external library except from STL containers.
NanoShaper can be directly used in Python: to this aim you will need the
Swig package installed (Enthough Python distro already has). Rename CMake-
Lists python.txt into CMakeLists.txt and run cmake as in the previous case but
this time inside build python folder. This process will generate a project or a
make file; by building the project/or performing make you will be end up with
the following files: NanoShaper.py and NanoShaper.pyd. You should put these
files in a place where they can be reached by Python such as the same folder
where you write your script: then you can use NanoShaper classes as for any
other Python package by importing NanoShaper. In the folder python example
see the file example.py where the NanoShaper classes are used and the surface
is visualized via MolFX.py script.

3 Surface Configuration

The configuration file has the following flags and options:

3



3.1 Grid parameters

Grid scale: Real value. Specify in Angstrom the inverse of the side of the grid
cubes. E.g. 2.0

Grid perfil: Percentage that the surface maximum dimension occupies with
respect to the total grid size. E.g. 80.

3.2 Maps settings

Build epsilon maps: Bool value. Build the epsilon and salt maps needed for an
FD solver (e.g. Delphi) solver of the PB equation. By default these are disabled.

Build status map: Bool value. Build the status map needed for cavity de-
tection. Enable this if you need to triangulate without Accurate Triangulation
enabled.

3.3 Surface parameters

XYZR FileName: String value. This is the file name of the molecule to be loaded
in the format xyzr. The format xyzr simply has one atom per line and each line
is respectively the x,y,z coordinate and the radius.

Surface File Name: String value. This is the name of the surface to be loaded.
For .off and .ply write the full file name, for msms file write the file name without
the extension (.face,.vert).

Surface: This string specifies the possible surfaces that can be loaded/built.
msms means that the surface type is of the type given by the MSMS tool [5].

4



mesh indicates a triangulated mesh either in .ply or .off format; skin will build the
Skin surface, blobby will build the Blobby surface and ses means the Connolly
surface. When an msms file is loaded the surface is autmatically converted in a
.off file named msms.off. For Skin and Blobby this field is ignored.

Skin Surface Parameter: Real value. It is the s ∈ (0, 1) parameter of the Skin
Surface. Its default value is 0.45 that leads to a surface very similar to the SES
surface. For s = 1.0 the surface is the convex hull of the atoms, if s = 0.0 the
van der Waals surface is obtained.

Blobbyness: This is the blobbyness value of the Blobby surface. Its default
value is -2.5 that makes it not too far from the SES.

Cavity Detection Filling: Bool value. If enabled cavity detection/filling is run
after surface ray-casting.

Keep Water Shaped Cavities: Bool value. This is an experimental feature. It
will try to check the shape of cavity. If spherical the cavity will be maintained,
if highly non spherical it will be removed. This flag is usefull when one wants
to filter out cavities with volume higher than a water molecule but which shape
is non spherical (e.g. tight long tube); this can happen in the skin surface.

Conditional Volume Filling Value: Real value in cubic Angstrom. It indicates
the threshold volume for which a void/cavity has to be filled or not. Cavi-
ties/voids whose volume is less than this threshold are filled. The triangulation
is corrected accordingly

Accurate Triangulation: Bool value. If enabled the surface is triangulated
and it is granted that every vertex is analytically sampled from the surface. If
disabled vertices are not analytically sampled but approximated. Disabling ac-
curate triangulation will signficantly decrease both the quality of the surface and
the memory requirements. If you set false consider enabling surface smoothing
to increase visual quality.

Triangulation: Bool value. If enabled the surface is triangulated and saved in
triangulatedSurf.off. For the Blobby surface, triangulation is always performed

5



and the file is saved in blobby.off; if triangulation is enabled triangulatedSurf.off
represents the Blobby surface after cavity detection/removal.

3.4 Mesh settings

Check duplicated vertices: Bool value. If enabled both during triangulation writ-
ing and reading duplicated vertices are checked. During writing this means that
duplicated vertices are removed.

Smooth Mesh: Bool value. If enabled the surface is triangulated and then
smoothed by Laplacian smoothing. Smoothing should be used to increase visual
quality of the mesh if Accurate Triangulation is false or in general when triangles
quality matters such as in Boundary Element Solvers.

3.5 Acceleration Grid Settings

Max mesh auxiliary grid size: Integer value, default 100. Maximum grid size of
the acceleration grid for meshes for boundary grid projections.

Max mesh patches per auxiliary grid cell: Integer value, default 250. Maxi-
mum number of triangles in a grid cube of the acceleration grid for boundary
grid projections.

Max mesh auxiliary grid 2d size: Integer value, default 100. Maximum grid
size of the acceleration grid for meshes for ray casting.

Max mesh patches per auxiliary grid 2d cell: Integer value, default 250. Max-
imum number of triangles in a grid cube of the acceleration grid for ray casting.

Max ses patches auxiliary grid 2d size: Integer value, default 50. Maximum

6



grid size of the acceleration grid for ses ray casting.

Max ses patches per auxiliary grid 2d cell: Integer value, default 400. Maxi-
mum number of patches in a grid cube of the acceleration grid for ray casting.

Max ses patches auxiliary grid size: Integer value, default 100. Maximum
grid size of the acceleration grid for boundary grid projections.

Max ses patches per auxiliary grid cell: Integer value, default 400. Maximum
number of patches in a grid cube of the acceleration grid for boundary grid
projections.

Max skin patches auxiliary grid size: Integer value, default 100. Maximum
grid size of the acceleration grid for skin boundary grid projections.

Max skin patches per auxiliary grid cell: Integer value, default 400. Maxi-
mum number of patches in a grid cube of the acceleration grid for boundary
grid projections.

Max skin patches auxiliary grid 2d size: Integer value, default 50. Maximum
grid size of the acceleration grid for skin ray casting.

Max skin patches per auxiliary grid 2d cell: Integer value, default 400. Maxi-
mum number of patches in a grid cube of the acceleration grid for ray casting.

3.6 File storage and others

Save Status map: Bool value. If enabled grid info is saved together with cavities
info. It must be true in order to visually inspect grid points in cavities.

7



Save eps maps: Bool value. Save the epsmap needed by a Finite Difference
PDE solver.

Save PovRay: Bool value. If enabled the Skin surface is converted into a file
named skin.pov ready to be ray-traced by PovRay program. The analytical Skin
surface is saved in the PovRay file and not its triangulation; this is done to get
the best visual effect. Conservatively the camera position is quite far from the
molecule, so it may need manual adjustments.

Number Thread: Integer value. Here you explicitly set the number of execu-
tion threads to optimize the execution time or to use only a subset of your cores.
As a rule thumb optimal performances can be obtained by setting as number of
threads the number of cores multiplied by 4; this should grant full CPU usage.
If this keyword is not present NanoShaper will use a number of threads equal
to the number of physical cores, remember that this choice is not optimal.

4 Extending the framework

The architecture of NanoShaper is in plain C++ and allows easy extensibility.
Most of the algorithms are in the Surface class in which also the parallelization
is performed. In order to expand the framework one has to extend the Surface
class; to this aim two strategies are possible: in the first case one re-implements
the method getSurf and the Surface class facilities are not used, in a second
scenario one wants to use Surface class facilities.
In this latter case the following pure virtuals must be implemented:

• bool build()

• bool save(char* fileName)

• bool load(char* fileName)

• void printSummary()

• bool getProjection(double p[3],double* proj1,double* proj2,double* proj3,double*
normal1,double* normal2,double* normal3)

• void getRayIntersection(double p1[3],double p2[3],vector<pair<double,double*>>&
intersections,int thdID)

The functions save, printSummary and getProjection are only formally manda-
tory and can be safely implemented as empty functions; in particular getProjec-
tion is used when NanoShaper is interfaced with DelPhi and it is not necessary
for triangulation. Instead the only core routine is the getRayIntersection rou-
tine. If this routine is implemented then, from Surface inheritance, one will

8



get: volume estimation, surface area estimation, cavity detection, cavities re-
moval, cavities-removal-consistent surface triangulation. The ray casting will
be automatically parallelized by Surface class; one has to assure that getRayIn-
tersection routine is thread safe, that is rays can be casted in parallel without
compromising consistency; note that no concurrent writing should be requested.
If you need concurrent writing (such as concurrent cout) a boost mutex in Sur-
face class is available.
After the surface is implemented the user has to modify the main routine in
order to properly recognize the newly introduced surface. For more information
about each single function consult the doxygen functions documentation; for
any /bug fix/help/improvement/ contact the Author at sergio.decherchi@iit.it
.

5 Examples

In the examples folder some examples molecules can be run; moreover for con-
venience a precompiled win32 NanoShaper is given.
The first one is given by the configuration file conf.prm; this file loads the atoms
file barstar.xyzr and compute the Skin surface. Playing with this file you can
change the shape of the surface by changing the Skin surface parameter or using
the Blobby surface instead of the Skin.
The file bunny conf.prm shows how a standard mesh can be processed. In order
to load the surface two virtual atoms are defined which represents the two op-
posite points of the bounding cube of the mesh; this is done in order to build a
grid consistent with the mesh. Other two dummy atoms are added on the same
positions because NanoShaper needs at least four atoms to work.
In the folder python example the file example.py shows how to interact with
NanoShaper classes from Python.

Acknowledgments

The Author would like to thank Nico Kruithof for useful discussions and code
snippets about the CGAL implementation of the Skin surface and Marco Attene
from IMATI for providing the .ply file reader.
This work is supported by NIGMS, NIH, grant number 1R01GM093937-01.

References

[1] Y. Zhang G. Xu C. Bajaj. Quality meshing of implicit solvation models
of biomolecular structures. Computer Aided Geometric Design, 23:510530,
2006.

[2] Sergio Decherchi and Walter Rocchia. A general and robust ray casting
based algorithm for triangulating surfaces at the nanoscale. submitted.

9



[3] H. Edelsbrunner. Deformable smooth surface design. Discrete and Compu-
tational Geometry, 21(1):87–115, 1999.

[4] M. Phillips, I. Georgiev, A.K. Dehof, S. Nickels, L. Marsalek, H.-P. Lenhof,
A. Hildebrandt, and P. Slusallek. Measuring properties of molecular surfaces
using ray casting. In Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1 –7,
april 2010.

[5] M. F. Sanner, A. J. Olson, and J.C. Spehner. Reduced surface: An efficient
way to compute molecular surfaces. Biopolymers, 38:305320, 1996.

10


	What's new
	Getting Started
	Automatic mode for Linux/Mac
	Manual mode for any OS

	Surface Configuration
	Grid parameters
	Maps settings
	Surface parameters
	Mesh settings
	Acceleration Grid Settings
	File storage and others

	Extending the framework
	Examples

