
NanoShaper 0.7 Guide

Sergio Decherchi
Fondazione Istituto Italiano di Tecnolgia

November 5, 2013

Analyzing molecular surfaces it is a key issue in biophysical modeling. The
aim of NanoShaper is to measure molecular properties such as the volume,
the surface area and cavities, build a Finite Difference grid for PDE solution,
compute pockets and to triangulate the molecular surface; this is achieved by
employing ray-casting [4, 2].
Ray-casting here is used as a tool to inspect, in a grid based world, the inner part
of the surface. This allows to build an in/out map by which one can perform
floodfill to identify cavities, estimate their volume, and fill them if requested.
The software can be used also with non molecular surfaces provided that they
are manifold. The algorithm can deal with analytical or meshes surfaces. The
algorithm is robust to duplicated vertices/faces nad almost degenerate triangles.
Volume is estimated by a triple ray-casting process using as starting points of
the ray the x,y,z sides of the cube that contains the molecule; the three obtained
values of the volume are averaged thus getting an highly accurate result.
In order to estimate the surface area an ad hoc parallel Marching Cubes al-
gorithm has been developed in order both to triangulate the surface and to
accurately perform surface area estimation [4]; moreover if voids are removed
the final triangulation is consistent with cavities removal. All the framework is
developed in portable, expandable C++.
One can load a .off/.ply triangulated mesh, a msms file [5] and build the Skin
[3], Blobby [1] and the SES (Connolly) molecular surfaces.

1 What’s new

In this version new tools and several improvements are present:

• This version of NanoShaper, using the DelPhiPatcher, can be interfaced
to DelPhi Fortran 77 solver. From DelPhi all the necessary structures are
imported to let solve the PB equation on th grid colouring induced by
NanoShaper. PDB data is also imported such that additional atoms info
is available.

• The first grid operator is introduced, namely the minus operator. By
grid operator we mean a function that takes as input one or more grids

1

(surf.u3d)

Figure 1: Example of Skin surface ray-traced by PovRay and triangulated (in-
teractive)

and produces an output grid. The minus operator is introduced because
it is used to support pocket/cavity detection. To support cavity/pocket
detection the keyword Operative Mode is introduced. When set to pockets
pockets detection is carried instead of the usual flow.

• Normals to vertices can be computed, analytically where possible. Meshes
can now be saved in the, here introduced, OFF+N, OFF+N+A formats.
These new formats save the nearest atom index (A) and the normals (N).
Now meshes can be saved in MSMS format too when explicitly requested.

• Octree are now used when collecting the analytical intersections for the
triangulation. This leads to a significant memory saving, in particular
when an high resolution is used for triangulation.

• A parallel version of the Marching Cubes algorithm is present. It is a major
change with respect to the previous version in that the algorithm as been
significantly reformulated; often it gives a linearly scaling performance.

• Load balancing during ray-tracing is significantly improved leading to an
improved performance.

• The floodfill algorithm for closed cavity detection can lead to signficant
performance improvements (4x) in particular when the number of detected
cavities is relatively small (< 10).

• An algorithm to convert a mesh to a set of approximating atoms (balls)
is developed. This can be useful for those codes which, for instance, use
as input only a set of atoms (e.g. DelPhi Fortrant 95 code) and are not
able to directly manipulate an arbitrary mesh.

• The classes that derive from Surface can be very easily registered. It is
sufficient to add the .cpp and .h files of the new surface in src directory

2

and recompile to make the surface available to the rest of the framework.
To make clear how the surface derived classes should be written the Ex-
ampleSurface class is provided.

2 Compilation/Installation

NanoShaper can be automatically configured and compiled with the setup.py
script in Linux/Mac or compiled and installed manually. For Windows user an
executable is in bin directory. For optimal performance Linux is suggested. To
run NanoShaper type the NanoShaper executable followed by the configuration
file. Remember that NanoShaper needs at least 4 atoms to work: if you have
less atoms put the missing atoms with 0 radi on the same position of the original
atoms. Here the two procedures for compiling NanoShaper.

2.1 Automatic mode for Linux/Mac

In a Linux shell run:

python setup.py

This will try to automatically guess your distribution, download and install
the necessary packages accordingly, download CGAL, compiling CGAL, patch-
ing CGAL, configuring and compiling NanoShaper as Stand Alone (.exe), as a
shared object for DelPhi, or as a Python module. You will find NanoShaper in
the build folder.

2.2 Manual mode for any OS

In order to build the full version of the software the system must have in-
stalled CGAL (for the Skin/SES support CGAL 4.2 was used), Boost libraries
and cmake; In Linux/Mac GCC is required and in Windows NanoShaper it has
been tested on Visual Studio 2008/2010 but it should work also on next versions.
Building the software consists in a cmake configuration step and make; addition-
ally patching CGAL is required (for Visual Studio 2010 also Power test 3.h is
required as patch); prior to building, overwrite the files contained in CGALpatch
in the CGAL include directory where the same .h are present. For simplicity
and to minimize the number of packages to be installed use the following cmake
command for CGAL:

cmake . -DWITH examples=false -DWITH CGAL Qt4=false
-DWITH CGAL Qt3=false -DWITH CGAL ImageIO=false

Once CGAL is compiled to build the configuration for the software go to NanoShaper
build folder and type cmake ... If you are on Windows and on a 64 bit machine
perform cmake by expliciting setting the current compiler and 64 bits build to
avoid a cmake bug.
On a Windows system you will get a Visual Studio project and Linux/Mac a

3

make file. Build either typing make or using Visual Studio.
If CGAL is not present, mesh, msms and Blobby surfaces will be still available
and the code should be compilable with any C++ compiler that has boost sup-
port. If neither boost is present the same functionalities will be given but using
a single execution thread; in this last case the software does not depend on any
external library except from STL containers.
NanoShaper can be directly used in Python: to this aim you will need the
Swig package installed (Enthough Python distro already has). Rename CMake-
Lists python.txt into CMakeLists.txt and run cmake as in the previous case but
this time inside build python folder. This process will generate a project or a
make file; by building the project/or performing make you will be end up with
the following files: NanoShaper.py and NanoShaper.pyd. You should put these
files in a place where they can be reached by Python such as the same folder
where you write your script: then you can use NanoShaper classes as for any
other Python package by importing NanoShaper. In the folder python example
see the file example.py where the NanoShaper classes are used and the surface
is visualized via MolFX.py script.

3 Usage

3.1 Triangulation

The first step for computing the molecular surface is obtaining an input file.
NanoShaper as input format for atom positions/radii uses .xyzr files, where
every line represents an atom and each column represents the x,y,z coordinate
and the last one represents the radius expressed in Angstrom.
We developed a Python (thus portable) script, called pdb2xyzr.py, to support the
conversion of a pdb file into a .xyzr file; this script (as all the scripts/programs
that will be discussed) is freely downloadable from:

www.eletrostaticszone.eu

by this script the user can either give a pdb code ot the path to the pdb file; in
the first case the pdb will be downloaded from the pdb repository in the second
it will be accessed from the disk. This script assigns radii based on a .siz file
that represents a database of radii for proteins; for those users that are familiar
with DelPhi, these are the same database files used by DelPhi to assign radii.
This script uses the VMD atom selection string such that the user can easily
filter the interesting part of the protein; the selected part will be also saved in
pdb format. To get help it is sufficient to run the script without arguments.
Suppose that we want to download the Purine Nucleoside Phosphorylase monomer
(code 1RSZ) and get only the protein part. We would run:

python pdb2xyzr.py 1rsz protein

4

On disk we will get the file 1rsz.xyzr and the pdb selection 1rsz.pdb. Now we
could protonate this last file with tleap from AmberTools. It is sufficient to run
tleap executing the following commands:

• Start tleap by tleap. Assure to have AmberTools home in the path.

• Load ff99SBildn parameters by source leaprc.ff99SBildn

• Load the pdb, A = loadpdb selection 1rsz.pdb

• Now the protein has been protonated; save it by savepdb A 1rszH.pdb

Now we can re-run pdb2xyzr.py to get the final input file:

python pdb2xyzr.py 1rszH.pdb all

The final input file is named 1rszH.pdb.xyzr.
The only additional file necessary for NanoShaper to run is the configuration file.
NanoShaper, if run without arguments, will search the default name surfaceCon-
figuration.prm; alternatively the user can run NanoShaper giving as argument
the configuration file name. NanoShaper configuration file uses the # character
at the beginning of the line to define a comment; the case sensitive keywords
are all of the type:

key = value

where key is a word without blank spaces and value can be either a string (a
file name, true/false) or real/integer value.
Supposing that the input file is in the current directory in the configuration file
we will write:

XYZR FileName = 1rszH.pdb.xyzr

By default NanoShaper will save the mesh in Geomview .off format in the file
triangulatedSurf.off. If the user has an Ubuntu distribution he can download
Geomview by apt-get and easily visualize it. The position of the vertices is
very accurate because they are analitycally sampled by the ray casting routine
but the quality of the surface triangles is modest because NanoShaper uses the
Marching Cubes triangulation rules; to improve the quality of the mesh the
user can instruct NanoShaper to smooth the output mesh; this can be done by
writing the following line in the configuration file:

Smooth Mesh = true

The triangles quality signficantly improves. NanoShaper allows to save in the
MSMS format, this can be done by adding the following two lines:

Compute Vertex Normals = true
Save Mesh MSMS Format = true

5

Normals will be computed analytically where possible; if some ray fails the
missing normals will be approximated by averaging the normals of the triangles
surrounding the vertex. Thus the mesh will always have all the normals defined.
The saved files are named triangulatedSurf.vert and triangulatedSurf.face. This
format can be read by VMD.
To have a practical idea of the NanoShaper hardware requirements we trian-
gulated at a scale of 2.0 Å−1 the 1sva entry, namely the Simian Virus 40, for
a total of about 1 million atoms. The test succeded with a peak memory con-
sumption of 10 GB of RAM. Globally, excluding the time needed to save on disk
the mesh, NanoShaper needs about 2 minutes to triangulate the Simian Virus
40 (normals included) on a two 8-cores SandyBridge workstation. NanoShaper
exploits well parallelism so multi-cores CPUs should be used when possible.

3.2 Cavity Detection

NanoShaper can detect closed cavities inside the surface under analysis and
return an estimation of their volume. NanoShaper uses iteratively a floodfill
algorithm to detect cavities and to this aim builds a map to mark in/out and
the cavity id. To enable and run cavity detection the user has to turn on the
following keywords:

Cavity Detection Filling = true
Build status map = true

The cavity will be filled if the volume of the cavity is under a given volume
threshold expressed in Å3. The keyword to select the volume threshold is the
following:

Conditional Volume Filling Value = 11.4

where the value represents approximately the volume of a water molecule.
On the console the user can find the detected cavities, the associated volume
and if the cavity was filled or not.
NanoShaper is able to save the serials (1 based indices) of the atoms that sur-
round the cavity; to save the cavities info (atoms indices) on file the following
key word must be turned on:

Save Cavities = true

If the user plans to the save the full internal map (by setting Save Status map
= true), than irrespectively of the previous keyword, cavities info will be saved.
A file named cavAtomsSerials.txt will be produced in which for each line the set
of the atom serials producing the cavity will be given. The user can feed these
indices to VMD by using the serial keyword as atom selection string and visually
see which are the atoms that contribute to the cavity. Note that NanoShaper
assumes the serials are consecutives and starts from 0; if this is not the case for
the current pdb, than NanoShaper serials can be converted to VMD indices by
just subtracting 1 to all the serials.

6

3.3 Pocket detection

The idea is that pockets could be defined as a volumetric difference map: in
particular as the volumetric difference map between two volumetric surfaces.
The pockets could be tought as what it can be accessed by a water molecule
(the usual SES with 1.4 Å of radius) and what cannot be accessed by a virtual
probe of bigger size (let us say 3.0 Å).
Operatively to detect pockets the user has to set the following keyword:

Operative Mode = pockets

whereas the default value normal means the usual surface building operative
mode. The user can choose to detect only pockets or both cavities and pockets;
the associated keyword is:

Pockets And Cavities = true

Moreover the user can even control the size of the big and the small radii
surfaces whose difference rules the pocket detection. In particular to detect very
flat pockets an higher value of the big probe radius will be needed, whereas if the
pocket is well formed (i.e. a tunnel with a relatively small mouth) the default
value of 3.0 Å will be sufficient. At the limit, if the big radius goes to infinity
the difference map comes from the difference of the convex hull and the SES.
The two associated keywords are:

Pocket Radius Big = 3.0
Pocket Radius Small = 1.4

where the default values where shown. For the pockets/cavities NanoShaper
can estimate the volume and the surface area; to enable surface area estimation
the keyword Triangulation must be to set to true. In this case the triangulations
of the pockets will be saved such that the user can visualize them. These will
be named as per cav triX.Y where X is a number starting from 0 that index the
pockets/cavities and Y is the format that by default is Geomview .off, or it can
be MSMS .face, .vert (such that the triangulations can be visualized in VMD).
The pockets can be filtered based on the volume; to filter pockets the user can
specify an equivalent number of water molecules that can stay on the pocket;
the associated key word is :

Num Wat Pocket = 2

The value of 2 is the default one.

3.4 DelPhi interfacing

NanoShaper can be interfaced to DelPhi when compiled as a dynamic library
(.so on Linux, .dynlib on Mac, .dll on Windows). To compile NanoShaper as

7

a shared object the user has to choose the lib option when requested by the
setup.py script. Upon compilation the user must assure that the library is
visible to the system. In the case of Windows it is sufficient to put the library
in the directory where DelPhi will be run or put it in the System path. On
Linux the library must be put on a reachable folder; the easiest way to do that
is to let point the LD LIBRARY PATH environment variable to the directory
that contains the library. On Mac the equivalent is DYLD LIBRARY PATH.
In order to let DelPhi load the shared library, it must be patched and recompiled.
DelPhi in Fortran 77 and double precision is the host code that is targeted by
NanoShaper: this can be downloaded from

http://compbio.clemson.edu/delphi.php.

To patch DelPhi the user has to download the DelPhi patcher program present
at www.electrostaticszone.eu.
It is sufficient to place the patcher directory content inside the DelPhi folder
and run the script delphiPatcher.py. If additionally the NanoShaper folder is
under the DelPhi folder, then the NanoShaper installer will be run; however the
user can separately compile and install the NanoShaper library. Being dynam-
ical objects when the user update NanoShaper there is no need to recompile
DelPhi, unless the way it interfaces to NanoShaper changes.
To properly run DelPhi with NanoShaper the user must provide in the running
directory the default NanoShaper configuration file, namely surfaceConfigura-
tion.prm. Moreover to instruct DelPhi to use NanoShaper instead of its internal
surfacing routine the new keyword surface must be used. For instance for using
the Connolly-Richards surface provided by NanoShaper it is sufficient to add
the following line to the DelPhi configuration file:

surface(connolly)

In an analogous ways the skin and the blobby surfaces can be selected. The
user can save the potential in cube file format and visualize it with VMD.
If in the surfaceConfiguration.prm file is requested to compute the pockets, DelPhi
will be used only as a pdb pre-processing tool; the electrostatic potential will
not be computed but now the output will also have the residues information.
The output is in a ProShaper like format; the pair mol.info and mol.pocket files
contain the pockets/cavities information.

4 Python interfacing

NanoShaper can be also compiled as a Python library by choosing the cor-
risponding option of the installer. For Windows precompiled Python modules
are provided. From Python the full functionalities of NanoShaper are provided.
Triangulating the surface means using very few lines of Python code:

Listing 1: NanoShaper in Python

8

import NanoShaper

conf file name
conf = "conf32.prm"
consistency check of conf file and conf loading
cf = NanoShaper.init(conf)
read from configuration file scale
scale = cf.readFloat("Grid_scale")
read from configuration file perfil
perfil = cf.readFloat("Grid_perfil")
read from configuration file the mol file name
molFile = cf.readString("XYZR_FileName")
build the grid
grid = NanoShaper.DelPhiShared(scale,perfil,molFile,False,False,False);
build the surface
surf = NanoShaper.surfaceFactory().create(cf,grid);
run the requested operations in the configuration file
NanoShaper.normalMode(surf,grid)
clean up
NanoShaper.dispose(cf)

5 Configuration file keywords

The configuration file has the following flags and options:

5.1 Global parameters

Operative Mode: String value. Determines the operative mode of NanoShaper.
When set to normal the default triangulation flow is executed. If the pockets
value is used pocket detection will be executed.

Grid scale: Real value. Specify in Angstrom the inverse of the side of the
grid cubes. E.g. 2.0

Grid perfil: Percentage that the surface maximum dimension occupies with
respect to the total grid size. E.g. 80.

5.2 Maps settings

9

Build epsilon maps: Bool value. Build the epsilon and salt maps needed for
an FD solver (e.g. Delphi) solver of the PB equation. By default these are
disabled.

Build status map: Bool value. Build the status map needed for cavity de-
tection. Enable this if you need to triangulate without Accurate Triangulation
enabled.

5.3 Surface parameters

XYZR FileName: String value. This is the file name of the molecule to be
loaded in the format xyzr. The format xyzr simply has one atom per line and
each line is respectively the x,y,z coordinate and the radius.

Surface File Name: String value. This is the name of the surface to be loaded.
For .off and .ply write the full file name; for msms file write either the full name
of one of the .face or .vert file.

Surface: This string specifies the possible surfaces that can be loaded/built.
mesh indicates a triangulated mesh is in .ply, .off or msms format; skin will
build the Skin surface, blobby will build the Blobby surface and ses means the
Connolly-Richards surface. When an msms file is loaded the surface is autmat-
ically converted in a .off file named msms.off.

Skin Surface Parameter: Real value. It is the s ∈ (0, 1) parameter of the Skin
Surface. Its default value is 0.45 that leads to a surface very similar to the SES
surface. For s = 1.0 the surface is the convex hull of the atoms, if s = 0.0 the
van der Waals surface is obtained.

Skin Fast Projection: Bool value. This flag says if enabling or disabling a fast
point to skin surface projection routine; the fast projection routine is slightly
less accurate than the slower one but it can be several times faster. In most of
the cases the difference is minimal. By default, to be very conservative, it is set

10

to false.

Blobbyness: This is the blobbyness value of the Blobby surface. Its default
value is -2.5 that makes it not too far from the SES.

Cavity Detection Filling: Bool value. If enabled cavity detection/filling is run
after surface ray-casting.

Keep Water Shaped Cavities: Bool value. This is an experimental feature. It
will try to check the shape of cavity. If spherical the cavity will be maintained,
if highly non spherical it will be removed. This flag is usefull when one wants
to filter out cavities with volume higher than a water molecule but which shape
is non spherical (e.g. tight long tube); this can happen in the skin surface.

Conditional Volume Filling Value: Real value in cubic Angstrom. It indicates
the threshold volume for which a void/cavity has to be filled or not. Cavi-
ties/voids whose volume is less than this threshold are filled. The triangulation
is corrected accordingly. This cavity detection mode can be used in normal
mode.

Num Wat Pocket: Integer value. This indicates the minimal number of water
molecules that a pocket can accomodate the get not filtered out. This threshold
refers to the pocket detection operative mode.

Pockets And Cavities: Bool value. If true both pockets and cavities will be
computed if in pockets operative mode. If false only pockets will be computed.

Accurate Triangulation: Bool value. If enabled the surface is triangulated
and it is granted that every vertex is analytically sampled from the surface. If
disabled vertices are not analytically sampled but approximated. Disabling ac-
curate triangulation will signficantly decrease both the quality of the surface and
the memory requirements. If you set false consider enabling surface smoothing
to increase visual quality.

11

Triangulation: Bool value. If enabled the surface is triangulated and saved in
triangulatedSurf.off. For the Blobby surface, triangulation is always performed
and the file is saved in blobby.off; if triangulation is enabled triangulatedSurf.off
represents the Blobby surface after cavity detection/removal.

Max Probes Self Intersections: Max number of probes collected for self in-
tersection grid cell during Connolly surface computation. Default value is 100.
Very rarely this parameter needs changing. In case, NanoShaper will complain
about that.

Self Intersections Grid Coefficient: Float value. In very rare cases you may
have to increase this value to correctly compute the Connolly surface. If needed,
NanoShaper will complain about that.

5.4 Mesh settings

Check duplicated vertices: Bool value. If enabled both during triangulation
writing and reading duplicated vertices are checked.

Smooth Mesh: Bool value. If enabled the surface is triangulated and then
smoothed by Laplacian smoothing. Smoothing should be used to increase visual
quality of the mesh if Accurate Triangulation is false or in general when triangles
quality matters such as in Boundary Element Solvers.

Vertex Atom Info: Bool value. If enabled for each vertex of the triangulation
the nearest atom index is computed and saved either in OFF+N or msms format.

Compute Vertex Normals: Bool value. If enabled triangulation vertices nor-
mals will be computed, analytically where possible. Turn on this option if you
save in msms format.

Save Mesh MSMS Format: Bool value. If enabled the triangulated mesh is
saved in MSMS format. To enable this format vertex normals must be computed
by enabling the Compute Vertex Normals keyword.

12

5.5 Acceleration Grid Settings

Max mesh auxiliary grid size: Integer value, default 100. Maximum grid size
of the acceleration grid for meshes for boundary grid projections.

Max mesh patches per auxiliary grid cell: Integer value, default 250. Maxi-
mum number of triangles in a grid cube of the acceleration grid for boundary
grid projections.

Max mesh auxiliary grid 2d size: Integer value, default 100. Maximum grid
size of the acceleration grid for meshes for ray casting.

Max mesh patches per auxiliary grid 2d cell: Integer value, default 250. Max-
imum number of triangles in a grid cube of the acceleration grid for ray casting.

Max ses patches auxiliary grid 2d size: Integer value, default 50. Maximum
grid size of the acceleration grid for ses ray casting.

Max ses patches per auxiliary grid 2d cell: Integer value, default 400. Maxi-
mum number of patches in a grid cube of the acceleration grid for ray casting.

Max ses patches auxiliary grid size: Integer value, default 100. Maximum
grid size of the acceleration grid for boundary grid projections.

Max ses patches per auxiliary grid cell: Integer value, default 400. Maximum
number of patches in a grid cube of the acceleration grid for boundary grid
projections.

Max skin patches auxiliary grid size: Integer value, default 100. Maximum
grid size of the acceleration grid for skin boundary grid projections.

13

Max skin patches per auxiliary grid cell: Integer value, default 400. Maxi-
mum number of patches in a grid cube of the acceleration grid for boundary
grid projections.

Max skin patches auxiliary grid 2d size: Integer value, default 50. Maximum
grid size of the acceleration grid for skin ray casting.

Max skin patches per auxiliary grid 2d cell: Integer value, default 400. Maxi-
mum number of patches in a grid cube of the acceleration grid for ray casting.

5.6 File storage and others

Save Status map: Bool value. If enabled grid info is saved together with
cavities info. It must be true in order to visually inspect grid points in cavities.

Save eps maps: Bool value. Save the epsmap needed by a Finite Difference
PDE solver.

Save PovRay: Bool value. If enabled the Skin surface is converted into a file
named skin.pov ready to be ray-traced by PovRay program. The analytical Skin
surface is saved in the PovRay file and not its triangulation; this is done to get
the best visual effect. Conservatively the camera position is quite far from the
molecule, so it may need manual adjustments.

Save Cavities: Bool value. If enabled a file named cavAtomsSerials.txt will
be produced in which for each line the set of the atom serials producing the
cavity/pocket will be given. This option is available in both normal and pockets
operative modes.

Number Thread: Integer value. Here you explicitly set the number of execu-
tion threads to optimize the execution time or to use only a subset of your cores.
As a rule thumb optimal performances can be obtained by setting as number of

14

threads the number of cores multiplied by 4; this should grant full CPU usage.
If this keyword is not present NanoShaper will use a number of threads equal
to the number of physical cores, remember that this choice is not optimal.

Tri2Balls: Bool value. When enabled either the input mesh or the triangu-
lated mesh will be converted to a set of balls whose envelope well approximate
the original surface.

Print Available Surfaces: If enabled the set of available surface will be printed.
This is a way to debug if a possibly newly defined surface has been recognised.

6 Extending the framework

The architecture of NanoShaper is in plain C++ and allows easy extensibil-
ity thanks to template metaprogramming for the Surface class: adding a new
Surface boils down in extending the Surface class via an additional class and
re-compiling without any other modification to the rest of the framework. From
inside the added surface class the developer will be able to add new keywords
seamlessly.
Most of the algorithms are in the Surface class in which also the parallelization
is performed. In order to expand the framework one has to extend the Surface
class; to this aim two strategies are possible: in the first case one re-implements
the method getSurf and the Surface class facilities are not used, in a second
scenario one wants to use Surface class facilities.
In this latter case the following pure virtuals must be implemented:

• bool build()

• bool save(char* fileName)

• bool load(char* fileName)

• void printSummary()

• bool getProjection(double p[3],double* proj1,double* proj2,double* proj3,double*
normal1,double* normal2,double* normal3)

• void getRayIntersection(double p1[3],double p2[3],vector<pair<double,double*>>&
intersections,int thdID)

The functions save, printSummary and getProjection are only formally manda-
tory and can be safely implemented as empty functions; in particular getProjec-
tion is used when NanoShaper is interfaced with DelPhi and it is not necessary

15

for triangulation. Instead the only core routine is the getRayIntersection rou-
tine. If this routine is implemented then, from Surface inheritance, one will
get: volume estimation, surface area estimation, cavity detection, cavities re-
moval, cavities-removal-consistent surface triangulation. The ray casting will
be automatically parallelized by Surface class; one has to assure that getRayIn-
tersection routine is thread safe, that is rays can be casted in parallel without
compromising consistency of data; note that no concurrent writing should be
requested. If you need concurrent writing (such as concurrent cout) a boost
mutex in Surface class is available.
For more information you could follow the ExampleSurface class that is an ex-
ample class that step by step shows the structure of the class that is needed
to extend NanoShaper; also consider reading the doxygen documentation in
the doc folder; for any /bug fix/help/improvement/ contact the Author at ser-
gio.decherchi@iit.it.

7 Examples

In the examples folder some examples molecules can be run; moreover for con-
venience a precompiled win 32,64 bits NanoShaper is given.
The first one is given by the configuration file conf.prm; this file loads the atoms
file barstar.xyzr and compute the Skin surface. Playing with this file you can
change the shape of the surface by changing the Skin surface parameter or using
the Blobby surface instead of the Skin.
The file bunny conf.prm shows how a standard mesh can be processed. In order
to load the surface two virtual atoms are defined which represents the two op-
posite points of the bounding cube of the mesh; this is done in order to build a
grid consistent with the mesh. Other two dummy atoms are added on the same
positions because NanoShaper needs at least four atoms to work.
In the folder python example the file example.py shows how to interact with
NanoShaper classes from Python.

Acknowledgments

The Author would like to thank Walter Rocchia for invaluable help, Nico Kruithof
for useful discussions and code snippets about the CGAL implementation of the
Skin surface, Marco Attene from IMATI for providing the .ply file reader and
the IIT Computational Platform for the computing resources.
This work is supported by NIGMS, NIH, grant number 1R01GM093937-01.

References

[1] Y. Zhang G. Xu C. Bajaj. Quality meshing of implicit solvation models
of biomolecular structures. Computer Aided Geometric Design, 23:510530,
2006.

16

[2] Sergio Decherchi and Walter Rocchia. A general and robust ray casting
based algorithm for triangulating surfaces at the nanoscale. PLOS ONE,
8(4), 2013.

[3] H. Edelsbrunner. Deformable smooth surface design. Discrete and Compu-
tational Geometry, 21(1):87–115, 1999.

[4] M. Phillips, I. Georgiev, A.K. Dehof, S. Nickels, L. Marsalek, H.-P. Lenhof,
A. Hildebrandt, and P. Slusallek. Measuring properties of molecular surfaces
using ray casting. In Parallel Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010 IEEE International Symposium on, pages 1 –7,
april 2010.

[5] M. F. Sanner, A. J. Olson, and J.C. Spehner. Reduced surface: An efficient
way to compute molecular surfaces. Biopolymers, 38:305320, 1996.

17

	What's new
	Compilation/Installation
	Automatic mode for Linux/Mac
	Manual mode for any OS

	Usage
	Triangulation
	Cavity Detection
	Pocket detection
	DelPhi interfacing

	Python interfacing
	Configuration file keywords
	Global parameters
	Maps settings
	Surface parameters
	Mesh settings
	Acceleration Grid Settings
	File storage and others

	Extending the framework
	Examples

