
Solving the Linearized

Poisson-Boltzmann Equation on GPUs

using CUDA

Colmenares, Jose
jose.colmenares@iit.it

Italian Institute of Technology

Ortiz, Jesus
jesus.ortiz@iit.it

Italian Institute of Technology

Decherchi, Sergio
sergio.decherchi@iit.it

Italian Institute of Technology

Rocchia, Walter
walter.rocchia@iit.it

Italian Institute of Technology

March 20, 2013

1 INTRODUCTION

The Poisson-Boltzmann equation (PBE) is a widely used tool to estimate the
electrostatic energy of molecular systems in ionic solution [5]. This last decade
experienced a rapid growth of available structural data concerning proteins and
other biological macromolecules as well as the availability of new and affordable
computational architectures that can be extremely useful in treating increas-
ingly larger and more complex systems [4] as well as in collecting and analyzing
electrostatic features throughout structural databases such as the Protein Data
Bank [7,11]. In this context, we present an implementation of a linearized PBE
solver based on a Finite-Difference scheme on a GPU architecture. Even though
there are GPU implementations of the linearized PBE solution (see for exam-
ple [13]), and suggestions on how to port a PBE solver on GPU [1], to our
knowledge a full description of a finite difference (FD) implementation followed
by integration and comparison with a widely used tool is lacking in the litera-
ture. We follow the approach of the DelPhi PBE solver [8, 10], which exploits
the checkerboard structure of the FD discretization of the Laplace differential
operator and adopts a Successive Over Relaxation (SOR) scheme to converge
to the solution.

We implemented the program on a NVIDIA GPU using the CUDA pro-
gramming language. CUDA enables C-style programming and gives access to

1



the GPU computing power, simplifying the process of parallel programming [2].
The code in CUDA is written in kernels that are executed in parallel on the
GPU. The kernels are executed in blocks of threads, and each block is executed
on a grid. The distribution of blocks and threads is configurable in 1D, 2D and
3D. The threads belonging to the same block have access to the same shared
memory, a sort of cache memory, with lower latency than the global device
memory. We finally interfaced our implementation with the DelPhi solver and
tested the achieved performance on a set of proteins of different sizes, so to
assess the efficiency of our solution.

1.1 The sequential Poisson-Boltzmann solver

Under the approximation of continuous dielectric media, the PBE describes
the electrostatic potential generated by fixed charges in a solute surrounded by
an aqueous solution containing a thermally averaged ionic distribution. In its
linearized form, which is valid for low salt concentration, it has the following
form:

∇ · [ε(x)∇Φ(x)] +
ρfixed

ε0
=

1

λ2
Φ(x) (1)

where Φ refers to the electrostatic potential, ε(x) is the space-varying relative
dielectric constant, ε0 is the permittivity of vacuum, ρfixed is the fixed charge
density on the solute, x is the position, and λ is the Debye length of the ionic
solution, a quantity describing the electrostatic screening made by the ionic
cloud in the solution [9]. The right hand side of equation (1) is present only
if x is located in the ionic solution. Our implementation uses the same FD
algorithm described in [8]. The sequential version is already fast and has been
successfully parallelized using the MPI paradigm with remarkable results [6].
The PBE can be discretized on a uniform grid as follows:[

6∑
i=1

εi +
(
h
λ

)2]
Φj −

6∑
i=1

εiΦi −
qj
ε0h

= 0 (2)

where Φj refers to the electrostatic potential at the node j, which has assigned
a net charge qj . The λ containing term is present only if the node j belongs
to the solvent and εi is the relative dielectric constant at one of the midpoints
between the node j and its six nearest neighbors on the grid, h is the grid
spacing. This discretized relationship can be used to build a linear system of
equations AΦ = b where a suitable mapping converting three dimensional to one
dimensional indices has to be adopted. The matrix A can then be decomposed
into A = D+L+U , where D is the diagonal of A, U and L are the strict upper
and lower triangular parts of A, respectively. According to the Successive Over-
Relaxation method, the iterative equation is given by:

Φ(n+1) = (D + ωL)
−1
{
ωb− [ωU + (ω − 1)D] Φ(n)

}
(3)

where ω is the over-relaxation factor and bracketed superscripts indicate iter-
ation number. The term (D + ωL)

−1
can be calculated using forward substi-

tution since D + ωL is a lower triangular matrix implying that the iterative

2



scheme must be consistent with the previously described mapping, which makes
parallelization difficult. The iteration stencil becomes:

Φ
(n+1)
j = ω


6∑
i=1

εiΦ
(n)
i +

qj
ε0h

6∑
i=1

εi +
(
h
λ

)2
+ (1− ω) Φ

(n)
j (4)

The best over-relaxation factor can be obtained from the highest eigenvalue of
the iteration matrix [12], which in turn can be calculated using the Connected-
Moments Expansion [8].
The following observations helped us significantly increase the efficiency of the
algorithm. First, the PBE discretized according to the FD scheme is endowed
with the so called checkerboard structure. All even grid points depend only on
their neighboring grid points, which are odd, and vice versa; this means that
we can iterate alternately on grid points of different parity until convergence.
Due to this property, we can break the order required by the SOR formula and
apply the parallelism inside each of the two steps. Second, it is worth pointing
out that in most points there are no charges and εi is independent on i. In fact,
ε varies only in points close or at the molecular surface. In this way the stencil
effectively becomes:

Φj =

6∑
i=1

Φi

6 + κ2j
(5)

where

κj =

{ (
h
λ

)
if j is inside the ionic solution,

0 otherwise.
(6)

which allows for a fast parallelization. After each run of this uniform stencil
corrections have to be made at the, few, points where charges are present and
where εi changes. This solution is faster than using the full non uniform stencil
everywhere.

2 IMPLEMENTATION

We have implemented the algorithm both in the CPU and in the GPU. In
figure 1 we can see the flow diagram of the computation. At the beginning of
the calculation there are some pre-processing steps that run always in the CPU
(with blue background). These steps are:

• Determine inside/outside. Here we determine which grid points are
on the solute or in the solvent. This involves calculating the molecular
surface of the solute (see [3] for a summary of the different possibilities),
and store a flag related to its position. If there is salt in the solution we
also calculate the κ factor.

• Find dielectric boundaries. In this block we look for the midpoints
in which εi varies. That’s equivalent to find the grid points closest to
the dielectric boundary. Once the boundary grid points are found, the
corresponding entry has to be corrected at each iteration.

3



• Set boundary conditions. This block sets up the boundary conditions
to be used. See [9] for a description of the possibilities.

• Prepare charges correction. We calculate the correction to be made
at the grid points where charges have been assigned.

If we are running the program in GPU mode, the next step is the initializa-
tion of the graphic card. Here we allocate the necessary memory on the device
and transfer the initial system state and all the necessary information to start
the calculation loop: phi (even and odd), charges (position and value), dielectric
boundaries (position, factors and temporary vectors for convergence test) and
the solvent flag (only when there is salt in the solution).

After that, we enter in the main loop, where we update alternatively the
odd and even points of the grid. The computation blocks of the main loop are
programmed for both CPU and GPU (blocks with orange background). In this
way we can run the whole algorithm on the GPU and reduce to the minimum
the data transfer between the host (main memory of the computer) and the
device (global memory of the graphic card). The only memory transfer in the
main loop is carried out every several iterations (typically set to 10) to test the
convergence. The steps of the main loop are the following:

• Save dielectric boundaries. This block saves the state of the dielectric
boundary points to a temporary vector.

• Run Poisson or Poisson-Boltzmann. This is the main calculation
block. The CUDA implementation is detailed in the subsections 2.1 and
2.2.

• Adjust dielectric boundaries. In this block we update the potential
value of the grid points located at the dielectric boundary, this is done at
the end of each iteration. In the GPU implementation, the position of the
boundary points is stored in a linear integer texture. And the 6 factors
are stored in 3 floating point textures with two components each. Each
thread accesses one dielectric boundary point corresponding to its unique
thread ID.

• Add charges. Here we add the charge terms to the grid points that were
predefined as ”charged”. Similarly to the previous calculation block, in
the GPU implementation, the position of the charges is stored in a linear
integer texture and the value of the charges is stored in a linear floating
point texture.

• Calculate potential difference at the dielectric boundary. Here
we calculate the absolute differences between the current potential values
at the dielectric boundary with the one saved previously on a temporary
data structure. This is done since the boundary is the region where the
convergence is expected to be slower.

• Copy differences from device to host. The absolute differences calcu-
lated before are transferred entirely from the device to the host memory.

• Check convergence. The maximum absolute difference is compared
to the threshold to test the convergence and decide whether to stop the
iterative procedure. This operation is done always in the CPU.

4



• Copy the final solution from device to host. Once the convergence
is reached, we transfer the matrix of the calculated potential phi from the
device to the host memory.

We programmed two different CUDA kernels to implement separately Pois-
son and Poisson-Boltzmann equations; depending on the specific case, we apply
the corresponding one, however both of them share most of the optimizations.

2.1 Poisson calculation

Poisson calculation is based on a Laplace iteration corrected for local charge and
dielectric variation. When we use the checkerboard structure to solve Laplace
equation, each point of the grid uses the 6 neighbors of the opposite parity. In
other words, we can say that each point is used 6 times (except for the points
at the boundary of the grid). In our solution, we try to minimize the number
of memory accesses to increase the speed of the calculation. For that reason,
the target is to read each point only once and use it 6 times. The practical way
to do this is to copy the points from the global device memory to the shared
memory. The shared memory is faster than the global memory but it is shared
only between the threads from the same block and its size amounts only to
16kB.

The solution adopted in this work makes use of a bi-dimensional distribution
of threads and blocks, so as that each thread calculates a block of points of the
grid, corresponding to the third dimension. In the figure 2 we can see the bi-
dimensional distribution. The continuous lines are the threads that are actually
computing points of the grid, while the dotted lines mark the contour points
that are not updated during the calculation. The size of the blocks is Bx and
By. The Xs and Ys coordinates correspond to the local coordinates of the
thread inside its block that match the coordinates within the shared memory.
The X and Y coordinates are the global coordinates on the grid.

As we can see in figure 2 the grid (shaded in gray) could be smaller than
the blocks of threads. This is because all of these latter must have the same
dimension and it is not always possible to fit them into the grid dimension. Due
to this fact, there will be some threads with a global coordinate outside the grid
(that is X > Nx or Y > Ny). These threads will terminate their execution
without performing any calculation. As it can be expected, the performance is
affected by the number of threads of this type, but their impact decreases with
the size of the problem, since the percentage of discarded threads decreases with
the grid size. In principle, we could choose a different block size to reduce or
even eliminate this problem, but we would then hit an even bigger problem,
because we would be calculating with a suboptimal block size. The occupancy
of the GPU is an important factor, so bigger blocks usually are to be preferred.
The performance also increases with multiples of 32 threads, because the sched-
uler of the GPU allocates the threads in groups of 32, called warps. In our
implementation, a block size of 16x16 was found to provide the best results.

The coordinates are calculated in the following way:{
Xs = threadIdx.x
Ys = threadIdx.y

(7)

5



{
X = threadIdx.x+ blockIdx.x · (blockDim.x− 2)
Y = threadIdx.y + blockIdx.y · (blockDim.y − 2)

(8)

where (following the CUDA notation) threadIdx are the 2D coordinates of the
thread inside the block, blockIdx are the 2D coordinates of the block inside the
grid and blockDim is the dimension of the block.

In this way each thread has assigned different X and Y coordinates, and they
will iterate through the Z coordinate, skipping the points of opposite parity.
Since we are calculating independently even and odd points, the starting Z
coordinate will depend on the calculation parity and the X and Y coordinates
as shown in table 1 (we skip the Z = 0 point because it corresponds to the grid
boundary).

Table 1: Calculation of the initial Z coordinate

X + Y Zeven Zodd

Even 1 2

Odd 2 1

With the three coordinates X, Y and Z we can calculate the index in the
linear buffer were we stored the potential (phi) grid, as shown in equation (9).
This equation is the same for even and odd points:

index =

⌊
X + Y ·Nx+ Z ·Nx ·Ny

2

⌋
(9)

Each thread, including those that are in the border area, copies the value
of the grid point with opposite parity that has the same index to the shared
memory. After that, all the threads of the same block synchronize to be sure that
the shared memory is updated for all of them. Then, the interior points update
their values following the Laplace rule. The coordinates of the six neighbors,
codified in linear index rather than in 3D coordinates, are shown in tables 2 and
3 for even and odd points respectively. While applying the Laplace stencil, the
Left, Right, Back and Front points are already in the shared memory, so we use
the corresponding offset in the shared space. However, Bottom and Top points
are missing, so we have to read them from the global memory using the offset in
the global representation. Since we are iterating in the Z coordinate inside the
thread, we can reuse the Top information since it corresponds to the Bottom
point of the next Z coordinate. So, in each iteration we rewrite the Bottom
point with the previous Top point and we read a new value with the indicated
offset.

2.2 Linearized Poisson-Boltzmann calculation

The implementation of the Boltzmann term only requires considering the κ term
in the updating rule (5) for points that lay within the solvent. Basically, there
are two alternative ways to implement this algorithm. One is passing one value
per point, and thus practically duplicating the use of memory. The second is

6



Table 2: Neighbor offsets for even points

Neighbor Offset (global space) Offset (shared space)

Left (−X) −1 −1

Right (+X) +1 +1

Back (−Y ) −Nx −Bx

Front (+Y ) +Nx +Bx

Bottom (−Z) −Nx ·Ny/2 − 1 Not available

Top (+Z) Nx ·Ny/2 Not available

Table 3: Neighbor offsets for odd points

Neighbor Offset (global space) Offset (shared space)

Left (−X) −1 −1

Right (+X) +1 +1

Back (−Y ) −Nx −Bx

Front (+Y ) +Nx +Bx

Bottom (−Z) −Nx ·Ny/2 Not available

Top (+Z) Nx ·Ny/2 + 1 Not available

passing just a flag stating whether in the corresponding updating rule κ is equal
to zero or not. In this latter case, we introduce a branch division in the kernel.
In the tests, the second option was found to be faster, besides the advantage of
memory saving. As we will see in the next section, most of the gain comes from
the reduction of the data transfer. In the first case we need to read a double
precision floating point value (8 bytes) and in the second just a single byte.

References

[1] CUDA Lab Course Reference Manual 2011. http://num.math.

uni-goettingen.de/~stkramer/doc/autogen/CUDA_HPC_Praktikum/

step_12.html#AdaptionofPB_ModeltoCUDA.

[2] NVIDIA CUDA C Programming Guide. http://www.nvidia.com/.

[3] Sergio Decherchi, Jose Colmenares, Chiara E. Catalano, Michela Spag-
nuolo, Emil Alexov, and Walter Rocchia. Between algorithm and model:
different molecular surface definitions for the poisson-boltzmann based elec-
trostatic characterization of biomolecules in solution. Commun. Comput.
Phys., 13:61–89, 2012.

[4] Lucy R. Forrest and Thomas B. Woolf. Discrimination of native loop con-
formations in membrane proteins: decoy library design and evaluation of

7



effective energy scoring functions. PROTEINS: Structure, Function, and
Genetics, 52:492–509, 2003.

[5] Pawel Grochowski and Joanna Trylska. Continuum molecular electrostat-
ics, salt effects, and counterion binding–review of the poisson-boltzmann
theory and its modifications. Biopolymers, 89:93–113, 2007.

[6] Chuan Li, Lin Li, Jie Zhang, and Emil Alexov. Highly efficient and exact
method for parallelization of grid-based algorithms and its implementation
in delphi. Journal of Computational Chemistry, 2012.

[7] G. Neshich, W. Rocchia, A. L. Mancini, M. E. B. Yamagishi, P. R. Kuser,
R. Fileto, C. Baudet, I. P. Pinto, A. J. Montagner, J. F. Palandrani, J. N.
Krauchenco, M. C. Vianna, S. Souza, R. C. Togawa, and R. H. Higa.
Javaprotein dossier: a novel web-based data visualization tool for compre-
hensive analysis of protein structure. Nucleic Acids Research, 32:W595–
W601, 2004.

[8] A. Nicholls and B. Honig. A rapid finite difference algorithm, utilizing
successive over-relaxation to solve the poisson-boltzmann equation. Journal
of Computational Chemistry, 12:435–445, 1991.

[9] Walter Rocchia. Poisson-boltzmann equation boundary conditions for bi-
ological applications. Mathematical and Computer Modelling, pages 1109–
1118, 2005.

[10] Walter Rocchia, Emil Alexov, and Barry Honig. Extending the applicability
of the nonlinear poisson-boltzmann equation: Multiple dielectric constants
and multivalent ions. J. Phys. Chem. B, 105:6507–6514, 2001.

[11] Walter Rocchia and Goran Neshich. Electrostatic potential calculation for
biomolecules creating a database of pre-calculated values reported on a per
residue basis for all pdb protein structures. Genet. Mol. Res., 6:923–936,
2007.

[12] J. Stoer and R. Bulirsch. Numerical Mathematics. Springer, 2002.

[13] Rio Yokota, J.P. Bardhan, M. G. Knepley, L. A. Barba, and T. Hamada.
Biomolecular electrostatics using a fast multipole bem on up to 512 gpus
and a billion unknowns. Comput. Phys., pages 1271–1283, 2011.

8



Determine inside/outside

Find dielectric boundaries

Set boundary conditions

Prepare charges correction

Initialize GPU

Initialize phi

Copy phi from host to device

Copy charges

Initialize dielectric boundaries

Initialize solver flag

Initialize charges

Copy dielectric boundaries

Copy solver flag

Save dielectric boundaries Run Laplace/Boltzmann

Adjust dielectric boundaries

Calculate ODD

Calculate EVEN

Add charges

Compare dielectric
boundaries

Run Laplace/Boltzmann

Adjust dielectric boundaries

Add charges

Check convergence

Copy differences
from device to host

Copy phi from
device to host

x10

?
No

Yes

CPU block

GPU block

Memory transfer

CPU or GPU block

Figure 1: Computation flow diagram

9



(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

Nx

Bx

By

Ny

0 1 2 3 4 5 6 7 98

16 17 18 19 20 21 22 23 2524

0

1

2

3

4

5

6

7

8

9

8

9

10

11

12

13

14

15

16

17

X

Xs

Ys Y

Figure 2: Tartan distribution of the blocks of threads in CUDA

10


